Bedrock geology **Norwegian Mapping Authority** gerd.mardal@statkart.no #### **Table of contents** | 1.1 | Applicat | tion schema | 3 | |-------|----------|--|----| | 1.2 | Descrip | tion | 5 | | 1.2.1 | Axi | alPlaneTrace | 5 | | 1.2.2 | Oth | nerLineaments | 5 | | 1.2.3 | Ro | ckSurface | 6 | | 1.2.4 | Ro | ckBoundary | 8 | | 1.2.5 | | drockDescription | | | 1.2.6 | | drockProfile | | | 1.2.7 | | drockSamplePoint | | | 1.2.8 | | drockSymbol | | | 1.2.9 | | tcrop | | | 1.2.1 | | iation | | | 1.2.1 | | lt | | | 1.2.1 | | Ke | | | 1.2.1 | | eamentLocation | | | 1.2.1 | | ta _m orphicBoundary | | | 1.2.1 | | nck | | | 1.2.1 | | nerBedrockDelim | | | 1.2.1 | | narStructurePoint | | | 1.2.1 | | earStructurePoint | | | | 2.18.1 | Association < <topo>> RockSurface-RockBoundary</topo> | | | | 2.18.2 | Association < <topo>> RockSurface-GeoDelimLine</topo> | | | | 2.18.3 | Association < <topo>> Outcrop-GeoDelimLine</topo> | | | 1.2.1 | | delists | | | | 2.19.1 | < <codelist>> OtherRockTypeLineType</codelist> | 17 | | | 2.19.2 | < <codelist>> ChemicalCompositionOfRock</codelist> | | | | 2.19.3 | < <codelist>> RockGrainSize</codelist> | | | | 2.19.4 | < <codelist>> RockStructure</codelist> | | | | 2.19.5 | < <codelist>> RockSymbol</codelist> | | | | 2.19.6 | < <codelist>> RockTypeTexture</codelist> | | | | 2.19.7 | < <codelist>> BedrockClassification</codelist> | | | | 2.19.8 | < <codelist>> MainRockCode</codelist> | | | | 2.19.9 | < <codelist>> IndexMineral</codelist> | | | | 2.19.10 | < <codelist>> LineamentType</codelist> | | | | 2.19.11 | < <codelist>> DegreeOfSolubility</codelist> | | | | 2.19.12 | < <codelist>> MetamorphicDegree/MetamorphicGrade</codelist> | | | | 2.19.13 | < <codelist>> MetamorphicLineType</codelist> | | | | 2.19.14 | < <codelist>> LevelOfRadioactivity</codelist> | | | 1.2 | 2.19.15 | < <codelist>> StructurePointType</codelist> | | | 1.2 | 2.19.16 | < <codelist>> BedrockBoundaryType</codelist> | 30 | #### 1.1 Application schema # 1.2 Description ## 1.2.1 AxialPlaneTrace | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |-----|--------------------------|---|--------------------------|---------------------------|-------------------------|------------| | 1 | Class
AxialPlaneTrace | constructed line along a fold in the bedrock. The intersection line between the surface and a plane which divides the fold the most symmetrical way | | | | | | 1.1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | | 1.2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 1.3 | otherBedrocLine
Type | marking lines which
appear on bedrock maps
and which have not been
individually defined | 0 | 1 | OtherBedrocLi
neType | | | 1.4 | thematicQuality | the quality of the registration/survey of an object viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the objects importance for the society, the areal significance or the economy of the project | 0 | 1 | ThematicQualit
y | | | 1.5 | deformationPhas
e | | 0 | 1 | Integer | | ## 1.2.2 OtherLineaments | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |-----|--------------------------|---|--------------------------|---------------------------|---------------------|------------| | 2 | Class
OtherLineaments | major and minor structures
that have not been
specified in detail or which
not necessarily depend
upon geology | | | | | | 2.1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | | 2.2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 2.3 | thematicQuality | the quality of the registration/survey of an object viewed in relation to the actual conditions in nature. Different thematic | 0 | 1 | ThematicQualit
y | | | re | esolution / degree of | | | |----|----------------------------|--|--| | g | eneralisation may be | | | | g | overned by the objects | | | | ir | mportance for the society, | | | | tt | he areal significance or | | | | | he economy of the project | | | ## 1.2.3 RockSurface | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |-----|-----------------------------|--|--------------------------|---------------------------|------------------------|------------| | 3 | Class
RockSurface | polygon representing a delimitation of one (or more) rocktypes or a tectonic unit (nappes) | | | | | | 3.1 | extent | area over which an object extends | 1 | 1 | SurfaceWithQu ality | | | 3.2 | mainRockCode | rough classification of the bedrock in Norway | 1 | 1 | MainRockCod
e | | | 3.3 | rockGrainSize | | 0 | 1 | RockGrainSize | | | 3.4 | rockStructure | primary characteristics of
the appearance of the
rock, which helps to
describe how it was
formed | 0 | 1 | RockStructure | | | 3.5 | rockTypeTexture | term used about the structure of a rock (grain size, grain shape and arrangement) as seen under a microscope | 0 | 1 | RockTypeText
ure | | | 3.6 | rockTypeColour | predominant colour of the rock in nature | 0 | 1 | CharacterStrin g | | | 3.7 | geologicAge | the age of a rock indicate
how long ago since it was
formed. Name of
geological period/epoch
when a stratigraphic
sequence was formed | 0 | 1 | GeologicAge | | | 3.8 | geologicMinumu
mAge | name of geological
period/epoch for the period
of time when the youngest
rock type/stratigraphic
sequence was formed | 0 | 1 | GeologicMinu
mumAge | | | 3.9 | geologicMaximu
mAge | name of geological
period/epoch for the period
of time when the oldest
geological rock
type/stratigraphic
sequence was formed | 0 | 1 | GeologicMaxi
mumAge | | | 3.1 | bedrockAgeDeter
mination | age of the bedrock in
millions of years, (age
determination)
Note:
Stated as a figure with a
+/- tolerance, in millions of | 0 | 1 | CharacterStrin
g | | | | <u> </u> | | 1 | 1 | T | |----------|-------------------------------|--|---|---|--| | 2.4 | alatia al Matta a al | years | | 1 | DatingMathad | | 3.1 | datingMethod | method used to determine
the age of rocks, minerals
and organic material | 0 | 1 | DatingMethod | | 3.1 | fossilName | name of remains, imprints
or traces of prehistoric life
forms, preserved in soil or
rock strata | 0 | 1 | CharacterStrin g | | 3.1 | nappeUnitName | term used in structual
geology for rock masses
which have moved as
uniform sheets of rock or
slid in large folds to where
they are now | 0 | 1 | CharacterStrin
g | | 3.1 | mainGroupName | subdivision of two or more
groups of sedimentary or
volcanic sequences | 0 | 1 | CharacterStrin g | | 3.1
5 | geolGroupName | categorisation of two or
more formations of
sedimentary or volcanic
layers | 0 | 1 | CharacterStrin
g | | 3.1
6 | geolFormationNa
me | characterisation of
sedimentary or volcanic
layers forming a special
defined unit in a
stratigraphic sequence | 0 | 1 | CharacterStrin g | | 3.1
7 | degreeOfSolubilit
y | the ability of the rock to dissolve chemically | 0 | 1 | DegreeOfSolu bility | | 3.1
8 | chemicalCompos
itionOfRock | rough classification of rock
types based on the rock's
chemical composition,
closely connected to the
content of Si02 in the rock | 0 | 1 | ChemicalCom
positionOfRock | | 3.1
9 | metamorphicDeg
ree | the rock's degree of transformation (metamorphic grade) | 0 | 1 | MetamorphicD
egree/Metamor
phicGrade | | 3.2 | indexMineral | mineral used to characterize zones with a different degree of rock transformation (metamorphism) Note: Rendered as the initials of the mineral(s); several initials together, comma-separated, for example Ky,Sil. | 0 | 1 | IndexMineral | | 3.2 | levelOfRadioactiv
ity | natural level of radioactive radiation from the rock type/bedrock | 0 | 1 | LevelOfRadioa
ctivity | | 3.2
2 | geolMapNumber | numbering of various rock types on a map | 0 | 1 | Integer | | 3.2
3 | key | free text description of the bedrock/rock types | 0 | 1 | CharacterStrin g | | 3.2
4 | cmykColourCode | colour code definition in CMYK showing the | 0 | 1 | CharacterStrin g | | | | percentual content of
Cyan, Magenta, Yellow
and Black | | | | | |----------|----------------------------------|---|---|---|-------------------------|------------------| | 3.2
5 | bedrockClassific
ation | rough classification based
on the mutual age and
position of the bedrock (if it
has formed where it is
located or has been
moved (overthrust)) | 0 | 1 | BedrockClassif ication | | | 3.2
6 | geolValueAssess
ment | how important a geological
resource or registration is
in
relation to potential
economic utilisation now
or in the future | 0 | 1 | GeolValueAss
essment | | | 3.2
7 | areaValueIndicat
or | indication which shows to what extent one may expect objections if changes are made in the land-use plan | 0 | 1 | HeightReferen
ce | | | 3.2
8 | ageDescription | free text description of the age relations of the rocks | 0 | 1 | CharacterStrin g | | | 3.2
9 | Role
boundaryRock | | 1 | N | RockBoundary | Aggregrati on | | 3.3 | Role
boundaryGeoDeli
mLine | | 1 | N | GeoDelimLine | Aggregrati
on | # 1.2.4 RockBoundary | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |-----|----------------------------------|---|--------------------------|---------------------------|---------------------|------------| | 4 | Class
RockBoundary | the boundary between two
different types of rock or
rock assemblages | | | | | | 4.1 | border | course following the transition between different real world phenomena | 1 | 1 | CurveWithQual ity | | | 4.2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 4.3 | thematicQuality | the quality of the registration/survey of a theme viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the objects importance for the society, the areal significance or the economy of the project | 0 | 1 | ThematicQualit
y | | | 4.4 | Role
(unnamed)
RockSurface | | 1 | 1 | RockSurface | | ## 1.2.5 BedrockDescription | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc | Туре | Constraint | |-----|---------------------------------|--|--------------------------|----------------------|----------------------|------------| | | | | | е | | | | 5 | Class
BedrockDescripti
on | observation point in the field where a free text description of the bedrock geology has been given | | | | | | 5.1 | position | location where the object exists | 1 | 1 | PointWithQuali
ty | | ## 1.2.6 BedrockProfile | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc | Туре | Constraint | |-----|-------------------------|---|--------------------------|----------------------|-------------------|------------| | | | | | е | | | | 6 | Class
BedrockProfile | line on bedrock map
where a cross-section of
the bedrock is shown | | | | | | 6.1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | ## 1.2.7 BedrockSamplePoint | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |-----|---------------------------------|---|--------------------------|---------------------------|----------------------|------------| | 7 | Class
BedrockSampleP
oint | observation point in the field where one or more samples of the bedrock have been taken | | | | | | 7.1 | position | location where the object exists | 1 | 1 | PointWithQuali
ty | | | 7.2 | geolLocationNum
ber | unique number series for specification of geological locality | 1 | 1 | Real | | | 7.3 | geologistFieldNu
mber | the geologist's own
number series used to
identify and locate where
geological observations,
measurements or
sampling has been carried
out. Not necessarily
unique | 0 | 1 | CharacterStrin
g | | # 1.2.8 BedrockSymbol | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |----|------------------------|---|--------------------------|---------------------------|------|------------| | 8 | Class
BedrockSymbol | point on a map which
shows the location of
various types of
observations in the
bedrock through the use of
symbols | | | | | | 8.1 | position | location where the object exists | 1 | 1 | PointWithQuali
ty | |-----|--------------------------|---|---|---|----------------------| | 8.2 | geolLocationNum
ber | unique number series for
specification of geological
locality | 1 | 1 | Real | | 8.3 | thematicQuality | the quality of the registration/survey of a theme viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the objects importance for the society, the areal significance or the economy of the project | 0 | 1 | ThematicQualit
y | | 8.4 | geologistFieldNu
mber | the geologist's own
number series used to
identify and localise where
geological observations,
measurements or
sampling has been carried
out. Not necessarily
unique | 0 | 1 | CharacterStrin g | | 8.5 | rockSymbol | symbols used on bedrock maps | 0 | 1 | RockSymbol | # 1.2.9 Outcrop | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc | Туре | Constraint | |-----|----------------------------------|---|--------------------------|----------------------|---------------------|------------------| | | | | | е | | | | 9 | Class
Outcrop | visible rock surface
(unspecified) inan
otherwise soil-covered
area or on the seafloor | | | | | | 9.1 | extent | area over which an object extends | 1 | 1 | SurfaceWithQu ality | | | 9.2 | Role
boundaryGeoDeli
mLine | | 1 | N | GeoDelimLine | Aggregrati
on | ## 1.2.10 Foliation | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc | Туре | Constraint | |----------|------------------------|--|--------------------------|----------------------|---------------------|------------| | | | | | е | | | | 10 | Class
Foliation | planar structure in
bedrocks formed as a
result of deformation | | | | | | 10.
1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | | 10.
2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 10.
3 | thematicQuality | the quality of the registration/survey of a | 0 | 1 | ThematicQualit y | | | theme viewed in relation to | | | |-----------------------------|--|--| | the actual conditions in | | | | nature. Different thematic | | | | resolution / degree of | | | | generalisation may be | | | | governed by the societal | | | | importance of the theme, | | | | the importance of the area | | | | to the region?? or the | | | | project economy. | | | ## 1.2.11 Fault | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |----------|-------------------------------------|---|--------------------------|---------------------------|---------------------|------------| | 11 | Class
Fault | racture surface or fracture zone in the bedrock where a relative movement has occured between the blocks on either side | | | | | | 11.
1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | | 11.
2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 11. | thematicQuality | the quality of the registration/survey of a theme viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the objects importance for the society, the areal significance or the economy of the project | 0 | 1 | ThematicQualit
y | | | 11.
4 | displacementLimi
tClassification | classification to distinguish between different thrusts | 0 | 1 | Integer | | | 11.
5 | lineamentType | collective name for lineation in the bedrock thrusts, (faults and fracture zones) | 0 | 1 | LineamentTyp
e | | ## 1.2.12 Dyke | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc | Туре | Constraint | |----------|------------------------|--|--------------------------|----------------------|---------------------|------------| | 12 | Class
Dyke | description of a type of rock, ore or mineral mass filling a fissure or cleft in the bedrock | | e | | | | 12.
1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | | 12.
2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 12. | thematicQuality | the quality of the | 0 | 1 | ThematicQualit | |-----|-----------------|-----------------------------|---|---|----------------| | 3 | | registration/survey of a | | | у | | | | theme viewed in relation to | | | | | | | the actual conditions in |
| | | | | | nature. Different thematic | | | | | | | resolution / degree of | | | | | | | generalisation may be | | | | | | | governed by the objects | | | | | | | importance for the society, | | | | | | | the areal significance or | | | | | | | the economy of the project | | | | ## 1.2.13 LineamentLocation | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |----------|--------------------------------|---|--------------------------|---------------------------|----------------------|------------| | 13 | Class
LineamentLocati
on | observation point on a linear structure where a detailed description/measurement has been carried out | | | | | | 13.
1 | position | location where the object exists | 1 | 1 | PointWithQuali
ty | | | 13.
2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 13. | thematicQuality | the quality of the registration/survey of a theme viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the objects importance for the society, the areal significance or the economy of the project | 0 | 1 | ThematicQualit
y | | | 13.
4 | geolLocationNum
ber | unique number series for
specification of a
geological locality | 0 | 1 | Real | | | 13.
5 | geologistFieldNu
mber | the geologist's own
number series used to
identify and locate where
geological observations,
measurements or
sampling has been carried
out. Not necessarily
unique | 0 | 1 | CharacterStrin
g | | # 1.2.14 MetamorphicBoundary | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc | Туре | Constraint | |----|----------------------------------|--|--------------------------|----------------------|------|------------| | | | | | е | | | | 14 | Class
MetamorphicBou
ndary | delimitation of different
metamorphic grades
(facies) which is not | | | | | | | | defined by rock | | | | | |-----|-----------------|----------------------------|---|---|---------------|--| | | | boundaries | | | | | | 14. | centerline | course followed by the | 1 | 1 | CurveWithQual | | | 1 | | central part of the object | | | ity | | | 14. | metamorphicLine | isolines drawn through | 0 | 1 | MetamorphicLi | | | 2 | Type | observations where the | | | neType | | | | | rock has the same | | | | | | | | metamorphic grade | | | | | ## 1.2.15 Crack | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |----------|------------------------|---|--------------------------|---------------------------|---------------------|------------| | 15 | Class
Crack | fracture surface, fracture
zone or other mechanical
discontinuity in the
bedrock | | | | | | 15.
1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | | 15.
2 | typeOfGeolFindin
gs | hvor sikkert et geologisk
objekt er påvist i terrenget,
eller hvilken metode som
ligger til grunn for å
påvisningen/registreringen | 1 | 1 | TypeOfGeolFin dings | | | 15.
3 | thematicQuality | the quality of the registration/survey of a theme viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the societal importance of the theme, the importance of the area to the re | 0 | 1 | ThematicQualit
y | | | 15.
4 | lineamentType | collective name for lineation in the bedrock thrusts, faults and fracture zones) | 0 | 1 | LineamentTyp
e | | ## 1.2.16 OtherBedrockDelim | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |----------|--------------------------------|---|--------------------------|---------------------------|----------------------|------------| | 16 | Class
OtherBedrockDel
im | subdivision between larger geological units/provinces | | | | | | 16.
1 | centerline | course followed by the central part of the object | 1 | 1 | CurveWithQual ity | | | 16.
2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 16.
3 | bedrockBoundar
yType | | 0 | 1 | BedrockBound aryType | | ## 1.2.17 PlanarStructurePoint | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |-----------|-----------------------------------|---|--------------------------|---------------------------|------------------------|------------| | 17 | Class
PlanarStructureP
oint | observation/measurement of a planar structure in the bedrock | | | | | | 17.
1 | position | location where the object exists | 1 | 1 | PointWithQuali
ty | | | 17.
2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | | 17.
3 | geolLocationNum
ber | unique number series for
specification of geological
locality | 1 | 1 | Real | | | 17.
4 | structurePointTy
pe | measurement of the linear and planar structures at an observation point | 1 | 1 | StructurePoint
Type | | | 17.
5 | thematicQuality | the quality of the registration/survey of a theme viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the societal importance of the theme, the importance of the area to the region?? or the project economy. | 0 | 1 | ThematicQualit
y | | | 17.
6 | geologistFieldNu
mber | the geologist's own field
number for locations and
samples | 0 | 1 | CharacterStrin
g | | | 17.
7 | geolHorizontalVa
lue | value of measurement in the horizontal plane | 0 | 1 | Integer | | | 17.
8 | geolVerticalValue | value of the measurement in the vertical plane | 0 | 1 | Integer | | | 17.
9 | structureInverted
Order | used about a) a fold where
both flanks (sides) of the
fold dip the same way, or
b) a bedding plane which
is inverted in relation to its
original position | 0 | 1 | Boolean | | | 17.
10 | deformationPhas
e | clearly separate events (incidents) involving deformation of the bedrock Note: The different phases are distinguished with 0 as original, 1 for the first deformation phase, etc | 0 | 1 | Integer | | ## 1.2.18 LinearStructurePoint | No | Name/ | Description | Obligation/ | Maximum | Туре | Constraint | |----|-----------|-------------|-------------|-----------|------|------------| | | Role name | - | Condition | Occurrenc | | | | | | | | е | | | | 18 | Class
LinearStructureP
oint | observasjon/måling av en
lineær struktur i
berggrunnen
Eksempel: Foldeakse | | | | |----------|-----------------------------------|---|---|---|------------------------| | 18.
1 | position | observation/measurement of a linear structure in the bedrock | 1 | 1 | PointWithQuali
ty | | 18.
2 | typeOfGeolFindin
gs | | 1 | 1 | TypeOfGeolFin dings | | 18. | thematicQuality | the quality of the registration/survey of a theme viewed in relation to the actual conditions in nature. Different thematic resolution / degree of generalisation may be governed by the objects importance for the society, the areal significance or the economy of the project | 0 | 1 | ThematicQualit
y | | 18.
4 | geolLocationNum
ber | unique number series for specification of geological locality | 0 | 1 | Real | | 18.
5 | geologistFieldNu
mber | the geologist's own field
number for localities and
samples | 0 | 1 | CharacterStrin g | | 18.
6 | structurePointTy
pe | measurement of the line and plan structures at an observation locality | 0 | 1 | StructurePoint
Type | | 18.
7 | geolHorizontalVa
lue | value of measurement in the horizontal plane | 0 | 1 | Integer | | 18.
8 | geolVerticalValue | value of the measurement in the vertical plane | 0 | 1 | Integer | | 18.
9 | deformationPhas
e | clearly separate events (incidents) involving deformation of the bedrock Note: The different phases are distinguished with 0 as original, 1 for the first deformation phase, etc. | 0 | 1 | Integer | # 1.2.18.1 Association <<Topo>> RockSurface-RockBoundary | No | Name/ | Description | Obligation/ | Maximum | Туре | Constraint | |-----|--------------|-------------|-------------|-----------|--------------|------------| | | Role name | | Condition | Occurrenc | | | | | | | | е | | | | 19 | Association | | | | | | | | RockSurface- | | | | | | | | RockBoundary | | | | | | | 19. | Role | | 1 | N | RockBoundary | Aggregatio | | 1 | boundaryRock | | | | | n | | 19. | Role | | 1 | 1 | RockSurface | | | 2 | (unnamed) | | | | | | | | RockSurface | | | | | | # 1.2.18.2 Association <<Topo>> RockSurface-GeoDelimLine | No | Name/
Role name | Description |
Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |----------|---|-------------|--------------------------|---------------------------|--------------|-----------------| | 20 | Association
RockSurface-
GeoDelimLine | | | | | | | 20.
1 | Role
boundaryGeoDeli
mLine | | 1 | N | GeoDelimLine | Aggregatio
n | | 20.
2 | Role
(unnamed)
RockSurface | | 0 | 1 | RockSurface | | ## 1.2.18.3 Association <<Topo>> Outcrop-GeoDelimLine | No | Name/
Role name | Description | Obligation/
Condition | Maximum
Occurrenc
e | Туре | Constraint | |----------|-----------------------------------|-------------|--------------------------|---------------------------|--------------|-----------------| | 21 | Association Outcrop- GeoDelimLine | | | | | | | 21.
1 | Role
boundaryGeoDeli
mLine | | 1 | N | GeoDelimLine | Aggregatio
n | | 21.
2 | Role
(unnamed)
Outcrop | | 0 | 1 | Outcrop | | ## 1.2.19 Codelists ## 1.2.19.1 <<CodeList>> OtherRockTypeLineType | Nr | Code name | Definition/Description | Code | |------|--|---|------| | 1 | CodeList | marking lines which appear on bedrock maps and which have not been individually defined | | | | OtherRockTypeLineType | | | | 1.1 | Unspecified | | 0 | | 1.2 | Depositional contact | | 1 | | 1.3 | Depositional contact between lava | | 2 | | | streams | | | | 1.4 | Intrusive contact | | 3 | | 1.5 | Unconformity (angular unconformity) | | 4 | | 1.6 | Reversed magnetic pole | Line that indicate reversing of the magnetic poles | 5 | | 1.7 | Sedimentary | | 6 | | 1.8 | Intersecting line | FF-The intersection of the foliation with the surface or plane of a cross-section | 10 | | 1.9 | Axial trace of synform, unspecified | | 20 | | 1.10 | Axial trace for antiform | | 40 | | 1.11 | Axial trace of an anticline | | 60 | | 1.12 | Axial plane of an anticline, recumbent | | 61 | | 1.13 | Axial trace of a syncline | | 70 | | 1.14 | Axial trace of a syncline, recumbent | | 71 | | 1.15 | Coal seam | | 80 | | 1.16 | Constructed auxiliary line | FF-Constructed lines connecting geological boundaries in the air, sea or outside a cross- | 90 | | | | section | | | 1.17 | Buffer zone boundary | | 91 | # 1.2.19.2 <<CodeList>> ChemicalCompositionOfRock | Nr | Code name | Definition/Description | Code | |-----|---------------------------|---|------| | 2 | CodeList | rough classification of rock types based on their chemical composition, mainly connected to | | | | ChemicalCompositionOfRock | the content of Si02 in the rock | | | 2.1 | Acidic | FF-Magmatic rock containing more than 63% SiO2 | | | 2.2 | Intermediate | FF-Magmatic rock containing 52-63% SiO2. | | | 2.3 | Basic | FF-Magmatic rock containing 45-52% SiO2 | | | 2.4 | Ultrabasic | FF-Magmatic rock containing < 45% SiO2 | | | 2.5 | Salic | Said about magmatic rocks where normative silicon and aluminium-rich minerals such as | | |-----|-------|--|--| | | | quartz, feldspar, feldspatoids and corundum dominate | | | 2.6 | Femic | said about magmatic rocks where normative iron, magnesium and calcium-rich minerals such | | | | | as pyroxene, olivine, magnetite, ilmenite and hematite dominate | | ## 1.2.19.3 <<CodeList>> RockGrainSize | Nr | Code name | Definition/Description | Code | |-----|-------------------------------|---|------| | 3 | CodeList | classification of rock types according to grain size Note: (according to Visser, W.A. (ed.) | | | | RockGrainSize | 1980) | | | 3.1 | Very coarse-grained | Kornstørrelse større enn 30 mm | | | 3.2 | Coarse-grained | Kornstørrelse mellom 5 og 30 mm | | | 3.3 | Moderately- to coarse-grained | Kornstørrelse mellom 1 og 30 mm | | | 3.4 | Moderately granular | Kornstørrelse mellom 1 og 5 mm | | | 3.5 | Fine-granular | Kornstørrelse mellom 0.1 og 1 mm | | | 3.6 | Very fine-granular | Kornstørrelse mellom 0.01 og 0.1 mm | | | 3.7 | Density | Kornstørrelse mellom 0.001 og 0.01 mm | | | 3.8 | Cryptocrystalline | Kornstørrelse finere enn 0.001 mm | | ## 1.2.19.4 <<CodeList>> RockStructure | Nr | Code name | Definition/Description | Code | |------|---------------------------|--|------| | 4 | CodeList | primary features of the rock's appearance, which help to describe how it has been formed | | | | RockStructure | | | | 4.1 | Massive | Deformation type | | | 4.2 | Stratified | | | | 4.3 | Homogeneously layered | | | | 4.4 | Heterogeneously layered | | | | 4.5 | Diffusely layered | | | | 4.6 | Homogeneously thin-bedded | | | | 4.7 | Diffusely thin-bedded | | | | 4.8 | Cross-bedded | | | | 4.9 | Weakly foliated | | | | 4.10 | Foliated | | | | 4.11 | Highly foliated | | | | 4.12 | Foliated with lenses | Foliated with lens-shaped augens | | | 4.13 | Highly foliated with lens | Highly foliated with lens-shaped augens | | | 4.14 | Mylonitic | | |------|--------------------|--| | 4.15 | Blastomylonitic | | | 4.16 | Slightly elongated | | | 4.17 | Amphibolic | | | 4.18 | Highly elongated | | | 4.19 | Slightly folded | | | 4.20 | Folded | | | 4.21 | Highly folded | | | 4.22 | Boudinage formed | | | 4.23 | Brecciate | | | 4.24 | Crushed | | ## 1.2.19.5 <<CodeList>> RockSymbol | Nr | Code name | Definition/Description | Code | |------|--|--|------| | 5 | CodeList | symbols used on geological bedrock maps | | | | RockSymbol | | | | 5.1 | Conglomerate | | 1 | | 5.2 | Sedimentary breccia | | 2 | | 5.3 | Tillite | | 3 | | 5.4 | Agglomerate | | 4 | | 5.5 | Pillow lava | | 5 | | 5.6 | Cataclasite, crush breccia | | 6 | | 5.7 | Mylonite | | 7 | | 5.8 | Migmatite | | 8 | | 5.9 | Explosion breccia (pyroclastic | | 9 | | | breccia) | | | | 5.10 | Intrusion breccia | | 10 | | 5.11 | Dykes,dyke swarms cutting across | FF-Note: The symbol shows the main direction of the dyke?? | 51 | | | foliation or bedding. The symbol | | | | | shows the main direction of the dyke | | | | 5.12 | Dykes, dyke swarms cutting the | | 52 | | | foliation horizontally or diagonally, or | | | | | the direction is not known | | | | 5.13 | Dykes, dyke swarms following | | 53 | | | foliation or bedding | | | | 5.14 | Arrow pointing in the direction of younger strata in a stratigraphic sequence | 54 | |------|---|-----| | 5.15 | Fossil deposit | 55 | | 5.16 | Sampling locality for determination of isotopic age Dating method shown in DATERINGTY | 71 | | 5.17 | Borehole | 72 | | 5.18 | Earthquake, epicentre | 80 | | 5.19 | Antimony/Stibnite | 101 | | 5.20 | Arsenic, arsenopyrite | 102 | | 5.21 | Lead; galena | 103 | | 5.22 | Gold | 104 | | 5.23 | Iron; (hematite) or hematite and magnetite | 105 | | 5.24 | Iron, magnetite | 106 | | 5.25 | Copper; chalcopyrite, bornite, cuprite | 107 | | 5.26 | Cobalt, Cobaltite | 108 | | 5.27 | Chromium, chromite | 109 | | 5.28 | Manganese, manganese minerals | 110 | | 5.29 | Molybdenum, molybdenite | 111 | | 5.30 | Nickel; pentlandite and chalcopyrite, pyrrhotite | 112 | | 5.31 | Niobium, tantalum, scandium, niobium, tantalum and scandium minerals | 113 | | 5.32 | Platinum metals | 114 | | 5.33 | Zinc; sphalerite | 115 | | 5.34 | Zinc and lead; spaleriteand galena | 116 | | 5.35 | Rare earth minerals | 117 | | 5.36 | Sulphur, copper; pyrite, pyrrhotite with chalcopyrite, sphalerite and galena | 118 | | 5.37 | Silver, silver, argentite and other silver minerals | 119 | | 5.38 | Tin, Cassiterite | 120 | |------|-------------------------------------|-----| | 5.39 | Titanium, ilmenite and rutile | 121 | | 5.40 | Uranium, thorium, uranium minerals, | 122 | | | thorium minerals | | | 5.41 | Bismuth, bismuthine | 123 | | 5.42 | Tungsten, scheelite | 124 | | 5.43 | Native copper, cuprite | 125 | | 5.44 | Claim | 200 | | 5.45 | Mine in operation | 201 | | 5.46 | Mine, abandoned | 202 | | 5.47 | Open pit ore mine, in operation | 203 | | 5.48 | Open ore mine, abandoned | 204 | | 5.49 | Andalusite | 301 | | 5.50 | Anorthosite | 302 | | 5.51 | Apatite | 303 | | 5.52 | Baryte | 304 | | 5.53 | Basalt | 305 | | 5.54 | Beryl, beryllium minerals | 306 | | 5.55 | Brucite | 307 | | 5.56 | Whetstone | 308 | | 5.57 | Diabas, Dolerite | 309 | | 5.58 | Diatomite | 310 | | 5.59 | Diorite | 311 | | 5.60 | Dolomite | 312 | | 5.61 | Dolomite marble | 313 | | 5.62 | Feldspar | 314 | | 5.63 | Fluorite | 315 | | 5.64 | Gabbro | 316 | | 5.65 | Mica | 317 | | 5.66 | Gneiss | 318 | | 5.67 | Mica schist | 319 | | 5.68 | Graphite | 320 | | 5.69 | Garnet | 321 | | 5.70 | Granite | 322 | | 5.71 | Greenschist, greenstone | 323 | | 5.72 Limestone 5.73 Calcite marble 5.74 Kaolinite 5.75 Soapstone (steatite) 5.76 Quartz 5.77 Quartzite 5.78 Quartz schist | 324
325
326
327
328
329
330 | |---|---| | 5.74 Kaolinite 5.75 Soapstone (steatite) 5.76 Quartz 5.77 Quartzite 5.78 Quartz schist | 326
327
328
329 | | 5.75 Soapstone (steatite) 5.76 Quartz 5.77 Quartzite 5.78 Quartz schist | 327
328
329 | | 5.76 Quartz 5.77 Quartzite 5.78 Quartz schist | 328
329 | | 5.77 Quartzite 5.78 Quartz schist | 329 | | 5.78 Quartz schist | | | | 330 | | | | | 5.79 Kyanite | 331 | | 5.80 Larvikite | 332 | | 5.81 Magnesite | 333 | | 5.82 Marble | 334 | | 5.83
Nepheline syenite | 335 | | 5.84 Norite | 336 | | 5.85 Olivine rock (Dunite) | 337 | | 5.86 Pegmatite | 338 | | 5.87 Rutile, eclogite | 339 | | 5.88 Serpentinite | 340 | | 5.89 Sillimanite | 341 | | 5.90 Slate, flagstone/roofing tile | 342 | | 5.91 Syenite | 343 | | 5.92 Talc | 344 | | 5.93 Trondhjemite | 345 | | 5.94 Vermiculite | 346 | | 5.95 Wollastonite | 347 | | 5.96 Zirkon | 348 | | 5.97 Stone quarry (+letter showing | 401 | | mineral/type of rock) | | | 5.98 Stone quarry, abandoned | 402 | | 5.99 Stone quarry (aggregate, crushed | 404 | | rocks) | | | 5.100 Drilled well, unspecified | 501 | | 5.101 Drilled well, gas | 502 | | 5.102 Drilled well, oil | 503 | | 5.103 Drilling rig | 504 | # 1.2.19.6 <<CodeList>> RockTypeTexture | Nr | Code name | Definition/Description | Code | |------|-----------------------------|---|------| | 6 | CodeList
RockTypeTexture | phrase used about the structure of a rock type (grain size, grain shape and arrangement) as seen under a microscope | | | 6.1 | Granular | | | | 6.2 | Porphyritic | | | | 6.3 | Felsitic | | | | 6.4 | Ophitic | | | | 6.5 | Cataclastic | | | | 6.6 | Equigranular, idioblastic | | | | 6.7 | Heteroblastic | | | | 6.8 | Weak orientation | | | | 6.9 | Banded | | | | 6.10 | Schliered | | | ## 1.2.19.7 <<CodeList>> BedrockClassification | Nr | Code name | Definition/Description | Code | |-----|--|---|------| | 7 | CodeList | rough classification based on the relative age and movement of the bedrock | | | | BedrockClassification | Note: Whether they have been formed at its positionon or have been moved (overthrust) | | | 7.1 | Not classified | | 0 | | 7.2 | Precambrian basement | | 1 | | 7.3 | Eocambrian plutonic rocks of the Fen Complex | | 2 | | 7.4 | Autochthonous rocks, younger than the Precambrian basement | | 3 | | 7.5 | Autochthonous and overthrust sedimentary rock | FF-Autochthonous and overthrust sedimentary rock from the late Neoproterozoic and the Cambro-Silurian periods | 4 | | 7.6 | Overthrust rocks | | 5 | | 7.7 | Rocks from the Devonian period to and including the Neogene period | | 6 | | 7.8 | Soil deposits from the Quaternary period | | 7 | ## 1.2.19.8 <<CodeList>> MainRockCode | Nr | Code name | Definition/Description | Code | |------|--|---|------| | 8 | CodeList
MainRockCode | rough classification of the bedrock in Norway | | | 8.1 | Soil / Uncompacted material | | 1 | | 8.2 | Sandstone | | 2 | | 8.3 | Conglomerate, sedimentary breccia | | 3 | | 8.4 | Breccia | | 4 | | 8.5 | Mylonite, phyllonite | | 5 | | 8.6 | Sedimentary rock (unspecified) | | 7 | | 8.7 | Slate, sandstone, limestone | | 8 | | 8.8 | Sandstone, slate | | 9 | | 8.9 | Limestone, slate, marlstone | | 10 | | 8.10 | Limestone, dolomite | | 11 | | 8.11 | Granite, granodiorite | | 21 | | 8.12 | Diorite, monzodiorite | | 22 | | 8.13 | Syenite, quartz syenite | | 23 | | 8.14 | Monzonite, quartz monzonite | | 24 | | 8.15 | Mangerite syenite | | 25 | | 8.16 | Rhyolite, rhyodacite, dacite | | 26 | | 8.17 | Rhombus porphyry | | 27 | | 8.18 | Metabasalt | | 28 | | 8.19 | Volcanic rocks (unspecified) | | 29 | | 8.20 | Mangerite to gabbro, gneiss and | | 30 | | | amphibolite | | | | 8.21 | Gabbro, amphibolite | | 35 | | 8.22 | Keratophyre | | 37 | | 8.23 | Quartz-diorite, tonalite, trondhjemite | | 38 | | 8.24 | Olivine rock (Dunite) | | 40 | | 8.25 | Eclogitet | | 41 | | 8.26 | Anorthosite | | 45 | | 8.27 | Charnockite to anorthosite plutonic | | 46 | | | rocks, locally Metamorphosed | | | | 8.28 | Amphibolite and mica schist | | 50 | | | | | | | 8.29 | Greenstone, amphibolite | | 55 | |------|---|--|----| | 8.30 | Metasandstone, slate | | 60 | | 8.31 | Quartzite | | 61 | | 8.32 | Mica gneiss, mica schist, | | 62 | | | metasandstone, amphibolite | | | | 8.33 | Phyllite, mica schist | | 65 | | 8.34 | Calcareous mica schist, calc silicate | | 66 | | | gneiss | | | | 8.35 | Marble | | 70 | | 8.36 | Dolomite | | 71 | | 8.37 | Dioritic to granitic gneiss, migmatite | | 82 | | 8.38 | Augen gneiss, granite, foliated granite | | 85 | | 8.39 | Banded gneiss (amph., hbl.gneiss, | Banded gneiss (amphibolite, hornblende gneiss, mica gneiss locally migmatitic) | 87 | | | mic. gneiss), locally migm. | | | ## 1.2.19.9 <<CodeList>> IndexMineral | Nr | Code name | Definition/Description | Code | |------|--------------------|---|------| | 9 | CodeList | mineral used to characterise zones with a different degree of rock conversion (metamorphism) | | | | IndexMineral | Note: Rendered as the initials of the mineral(s), several initials together, comma-separated, for | | | | | example Ky,Sil. Note: Rendered as the initials of the mineral(s), several initials together, | | | | | comma-separated, for example Ky,Sil. | | | 9.1 | Albite | | Ab | | 9.2 | Almandine | | Alm | | 9.3 | Andalusite | | And | | 9.4 | Biotite | | Bi | | 9.5 | Cordierite | | Co | | 9.6 | Clinopyroxene | | Cps | | 9.7 | Diopside | | Di | | 9.8 | Garnet | | Gnt | | 9.9 | Hypersthene | | Ну | | 9.10 | Potassium feldspar | | Kfs | | 9.11 | Kyanite | | Ky | | 9.12 | Orthopyroxene | | Орх | | 9.13 | Pyroxene | | Px | | 9.14 | Pyrope | | Py | | 9.15 | Sillimanite | Sil | |------|-------------|-----| | 9.16 | Staurolite | St | # 1.2.19.10 <<CodeList>> LineamentType | Nr | Code name | Definition/Description | Code | |-------|--|---|------| | 10 | CodeList | collective name for lineation in the bedrock (displacement limits??, faults and fracture zones) | | | | LineamentType | Note: Definitions given in NGT (Nystuen 1986). | | | 10.1 | Unspecified | | 0 | | 10.2 | Concealed thrust boundary | | | | 10.3 | Thrust boundary, unspecified | | 10 | | 10.4 | Internal (smaller) thrust boundary | | 11 | | 10.5 | Thrust boundary below a nappe | | 12 | | | (sheet) | | | | 10.6 | Boundary for minor thrust sheet | | 13 | | 10.7 | Sole thrust | | 31 | | 10.8 | Floor fault | | 32 | | 10.9 | Decollement fault | | 33 | | 10.10 | Concealed normal fault | | 40 | | 10.11 | Normal fault | | 41 | | 10.12 | Reverse fault | | 42 | | 10.13 | Listric fault | | 43 | | 10.14 | Strike-slip fault, unspecified | | 51 | | 10.15 | Strike-slip fault, sinistral (leftward) | | 52 | | 10.16 | Strike-slip fault, dextral (rightward) | | 53 | | 10.17 | Oblique-slip fault, unspecified | | 61 | | 10.18 | Oblique-slip fault, normal and sinistral | | 62 | | 10.19 | Oblique-slip fault, normal and dextral | | 63 | | 10.20 | Oblique-slip fault, reverse and | | 64 | | | sinistral | | | | 10.21 | Oblique-slip fault, reverse and dextral | | 65 | | 10.22 | Transformal fault | | 71 | | 10.23 | Caldera fault | | 72 | | 10.24 | Transform, active | | | | 10.25 | Transform, extinct | | 74 | | 10.26 | Transform, extinct/covered | | 75 | | 10.27 Thrust block boundary 82 10.28 Fault, unspecified 99 10.29 Ordinary joint 100 10.30 Major joint, possible fault 101 10.31 Joint with potential young age movement 102 10.32 Joints, drawn on the basis of air photo interpretation 103 10.33 Dyke 191 10.34 Fracture zone, crushed zone 213 10.35 Assumed fault, crushed zone; drawn on the basis of geophysical data 300 10.36 Mylonite zone 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 10.41 Spreading axis, lnactive 601 | | | | | |---|-------|-----------------------------|----------|-----| | 10.29 Ordinary joint 100 10.30 Major joint, possible fault 101 10.31 Joint with potential young age movement 102 10.32 Joints, drawn on the basis of air photo interpretation 103 10.33 Dyke 191 10.34 Fracture zone, crushed zone 213 10.35 Assumed fault, crushed zone; drawn on the basis of geophysical data 300 10.36 Mylonite zone 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.27 | Thrust block boundary | | 82 | | 10.30 Major joint, possible fault 101 10.31 Joint with potential young age movement 102 10.32 Joints, drawn on the basis of air photo interpretation 103 10.33 Dyke 191 10.34 Fracture zone, crushed zone 213 10.35 Assumed fault, crushed zone; drawn on the basis of geophysical data 300 10.36 Mylonite zone 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.28 | Fault, unspecified | | 99 | | 10.31Joint with potential young age movement10210.32Joints, drawn on the basis of air photo interpretation10310.33Dyke19110.34Fracture zone, crushed zone21310.35Assumed fault, crushed zone; drawn on the basis of geophysical data30010.36Mylonite zone40010.37Shear zone
1Stiplet41010.38Shear zone 2Heltrekt41110.39Escarpment50010.40Spreading axis, active600 | 10.29 | Ordinary joint | | 100 | | movement 10.32 Joints, drawn on the basis of air photo interpretation 103 10.33 Dyke 191 10.34 Fracture zone, crushed zone 213 10.35 Assumed fault, crushed zone; drawn on the basis of geophysical data 300 10.36 Mylonite zone 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.30 | Major joint, possible fault | | 101 | | photo interpretation 10.33 Dyke 191 10.34 Fracture zone, crushed zone 213 10.35 Assumed fault, crushed zone; drawn on the basis of geophysical data 300 10.36 Mylonite zone 400 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.31 | | | 102 | | 10.34 Fracture zone, crushed zone 213 10.35 Assumed fault, crushed zone; drawn on the basis of geophysical data 300 10.36 Mylonite zone 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.32 | | | 103 | | 10.35 Assumed fault, crushed zone; drawn on the basis of geophysical data 300 10.36 Mylonite zone 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.33 | Dyke | | 191 | | on the basis of geophysical data 400 10.36 Mylonite zone 400 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.34 | Fracture zone, crushed zone | | 213 | | 10.37 Shear zone 1 Stiplet 410 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.35 | | | 300 | | 10.38 Shear zone 2 Heltrekt 411 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.36 | Mylonite zone | | 400 | | 10.39 Escarpment 500 10.40 Spreading axis, active 600 | 10.37 | Shear zone 1 | Stiplet | 410 | | 10.40 Spreading axis, active 600 | 10.38 | Shear zone 2 | Heltrekt | 411 | | | 10.39 | Escarpment | | 500 | | 10.41 Spreading axis, Inactive 601 | 10.40 | ' | | 600 | | | 10.41 | Spreading axis, Inactive | | 601 | # 1.2.19.11 <<CodeList>> DegreeOfSolubility | Nr | Code name | Definition/Description | Code | |------|----------------------|--|------| | 11 | CodeList | the ability of the rock to dissolve chemically Note: Also expresses buffer capacity of the the | | | | DegreeOfSolubility | bedrock | | | 11.1 | Of low solubility | | 1 | | 11.2 | Of medium solubility | | 2 | | 11.3 | Highly soluble | | 3 | # 1.2.19.12 <<CodeList>> MetamorphicDegree/MetamorphicGrade | Nr | Code name | Definition/Description | Code | |------|----------------------------------|--|------| | 12 | CodeList | the rock's conversion degree (metamorphic grade) | | | | MetamorphicDegree/MetamorphicGra | Note: A list of mineral assemblages which is characteristic for the transformation | | | | de | (metamorphism) has been specified under explanations | | | 12.1 | Non-metamorphic | No alternation of the rock | 1 | | 12.2 | Very low grade | Content of lawsonite, laumontite, prehnite, pumpellyite??, albite | 10 | | 12.3 | Low grade | Content of chlorite, zoisite, clinozoisite, actinolite | 20 | | 12.4 | Medium grade | Content of staurolite, cordierite (chloritoid and ferriferous chlorite are gone) | 30 | |-------|----------------------|--|----| | 12.5 | High grade | Content of potassium feldspar, aluminium silicates, cordierite, almandine | 40 | | 12.6 | Granulite grade | Content of hypersthene (high degree with very low water pressure) | 50 | | 12.7 | Eclogite grade | Content of omphacite, pyrope (basic composition) | 60 | | 12.8 | Contact metamorphism | Transformation as a result of contact metamorphism | 70 | | 12.9 | High pressure | Metamorphism/Transformation as a result of meteorite impact | 80 | | 12.10 | Anatexis | Partial melting, migmatite formation | 90 | # 1.2.19.13 <<CodeList>> MetamorphicLineType | Nr | Code name | Definition/Description | Code | |------|-----------------------|--|------| | 13 | CodeList | isolines drawn through observations where the rock has the same degree of transformation | | | | MetamorphicLineType | (metamorphism) | | | 13.1 | Anatexis | | | | 13.2 | Contact metamorphism | Grense for begynnende anatakse (oppsmeltning, migmatisering) | | | 13.3 | Mineral isograde | | | | 13.4 | Regional metamorphism | | | | 13.5 | Not indicated | | | ## 1.2.19.14 <<CodeList>> LevelOfRadioactivity | Nr | Code name | Definition/Description | Code | |------|------------------------|---|------| | 14 | CodeList | natural radioactive radiation from the rock type/bedrock | | | | LevelOfRadioactivity | Note: Usually established by measuring gamma radiation from the rock(measured in imp/sec). | | | 14.1 | Insufficient data | | 0 | | 14.2 | Low radiation | Lavere stråling enn det som er vanlig for de fleste bergarter (<50 imp/sek) | 1 | | 14.3 | Ordinary radiation | Normal stråling for de fleste bergarter (50-100 imp/sek) | 2 | | 14.4 | Slightly raised | Strålingen er noe høyere enn det som er vanlig for de fleste bergarter (100-200 imp/sek) | 3 | | 14.5 | Raised radiation level | Den naturlige strålingen fra bergartene er såpass forhøyet at den bør tas i betraktning under arealdisponeringen. Større sannsynlighet for oppkonsentrering av radon enn normalt. | 4 | | 14.6 | High radiation | Den naturlige strålingen fra bergarten er så høy at man ikke bør oppholde seg i området over lengere tid eller ta med seg steinprøver hjem. | 5 | ## 1.2.19.15 <<CodeList>> StructurePointType | Nr | Code name | Definition/Description | Code | |----|--------------------|---|------| | 15 | CodeList | measurement of the linear and planar structures at an observation point Note: Further | | | | StructurePointType | information and definitions of the structures are available in NGU Publication No. 113, p. 52 | | | | | and NGT vol. 66 (Nystuen 1986). | | |-------|------------------------------------|---|-----| | 15.1 | Fold axis | | 1 | | 15.2 | Anticline axis | | 11 | | 15.3 | Synklinalakse | | 15 | | 15.4 | Antiform axis | | 21 | | 15.5 | Synform axis | | 25 | | 15.6 | Lineation | Undifferentiated | 31 | | 15.7 | Intersection lineation | For example formed as a result of intersecting plane structures | 34 | | 15.8 | Streching lineation | For example formed by elongated conglomerate pebbles | 35 | | 15.9 | Lineation defined by minor folds | | 36 | | 15.10 | Mineral lineation | | 41 | | 15.11 | Slickenside striae | | 51 | | 15.12 | Bedding | Sedimentary bedding/primary bedding in plutonic rocks | 101 | | 15.13 | Schistosity/foliation | | 111 | | 15.14 | Schistosity | | 112 | | 15.15 | Foliation | | 113 | | 15.16 | Foliation and section?? lineation | | 114 | | 15.17 | Mylonite | | 115 | | 15.18 | Kink band, unknown orientation | | 116 | | 15.19 | Kink band with the dip of the band | | 117 | | | indicated | | | | 15.20 | Kink band with the dip of the band | | 118 | | | indicated and with the relative | | | | | movement denoted by an arrow | | | | 15.21 | Joint | | 121 | | 15.22 | Open joint | | 123 | | | Filled joint | | 125 | | 15.24 | Crenulation cleavage, fracture | | 131 | | | cleavage | | | | 15.25 | Planar structure based on | | 141 | | | geophysical data | | | | | Axial plane | | 151 | | 15.27 | Fault plan | | 161 | # 1.2.19.16 <<CodeList>> BedrockBoundaryType | Nr | Code name | Definition/Description | Code | |------|--------------------------|--|------| | 16 | CodeList | special delimitation in the bedrock, not comprising typical bedrock boundaries | | | | BedrockBoundaryType | | | | 16.1 | OceanContinentalCrust | FF-Delimitation between ocean crust and continental crust | 1 | | 16.2 | PaleocenEocenAvgrensning | Avgrensning mellom paleocen og eocen | 2 |